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Abstract 

In this paper, we present a real-time servo control application 

based on an open-source EtherCAT Master under two 

different real-time embedded Linux approaches, the fully pre-

emptible kernel and Xenomai. The fully pre-emptible 

approach utilizes the native Linux kernel patched to support 

pre-emption of high-priority tasks at any time and protects 

critical sections with spin locks. On the contrary, Xenomai is 

an example of dual-kernel approach, which provides real-time 

extensions to tasks piped alongside the standard Linux kernel 

through a hardware abstraction layer. The EtherCAT master is 

stacked on top of each real-time operating system to provide 

real-time connection with servo drives that are equipped with 

EtherCAT slave controllers that supports CANopen protocol. 

This paper aims to analyze the real-time performance of the 

EtherCAT Master depending on the real-time Linux extension 

it is running on in terms of cyclic task   periodicity, jitter, and 

in-controller execution time. The in-controller execution is 

defined as the time interval from the master sending 

information to slaves and vice-versa. The experiment is 

conducted on an actual system where the master is required to 

control a set of servo motors. The results acquired from each 

master are analyzed and compared to serve as a guideline in in 

designing industrial and automation systems using different 

real-time Linux extensions.  

Keywords: EtherCAT, Xenomai, RT_PREEMPT, Real-time, 

Embedded Linux. 

 

INTRODUCTION  

In practical applications, precise control period is critical for 

accurate manipulation. For example, in a robot system where 

servo motors symbolize each joint, velocity commands given 

to each of the motors should be kept in strict time sampling to 

smoothly follow the desired path. Moreover, data from the 

environment and other disturbances are acquired via several 

types of sensors which are updated periodically, if significant 

data loss occurs, the system would not be able to react 

accordingly and result to a failure. Defining the importance of 

conserving real-time requirements [1-2]. 

To meet these constraints, real-time Ethernet protocols have 

been developed to ensure determinism over standard Ethernet 

since it is not optimized to send subsequent short messages 

and could not realize standard automation real-time 

requirements in comparison to other fieldbuses, which are 

vital in controlling intelligent and dynamic systems in the 

industrial field. EtherCAT (Ethernet for Control Automation) 

is a real-time Ethernet protocol that is gaining popularity in 

rigorous automation. It offers various appealing features such 

as optimal usage of the Ethernet bandwidth for data transfers, 

short cycle times, and full compatibility with the standard 

Ethernet protocol [3-5].  

Commonly, EtherCAT systems require a master connected to 

several slaves that are configured either into daisy chain, star, 

or tree topology. Slave connection can also be a combination 

of any of the three. The EtherCAT master is required to be 

running on top of a real-time operating system (RTOS) that 

provides mechanisms for synchronized data-handling and 

real-time scheduling. Commercial and open source EtherCAT 

master distributions such as KPA EtherCAT Master, Simple 

Open EtherCAT Master (SOEM), and IgH EtherCAT Master 

are designed originally for standard Linux [6-8]. However, 

standard Linux does not provide a real-time scheduler since it 

values fairness over priority [9]. To achieve real-time 

capability, there are two popular real-time Linux methods that 

are largely used in general: pre-emptible kernel approach and 

dual-kernel approach, represented respectively by 

RT_PREEMPT and Xenomai [10-11].  

Sung et.al [12] developed an EtherCAT system using older 

versions of both Xenomai (2.6.0) and IgH EtherCAT (1.5.0) 

and constructed a holistic timing analysis model of the system 

in terms of end-to-end delay between the synchronized 

EtherCAT processes. However, real-time performance of the 
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control task that handles EtherCAT frames running on the 

master was not included in their timing model.  

On the other hand, Cereia et.al [13] performed a similar study 

to evaluate the performance of IgH EtherCAT Master using 

RT_PREEMPT. Although the real-time performance of the 

EtherCAT control task was evaluated, their procedure runs the 

EtherCAT master more like a network adapter than a main 

controller. Thus, performance with actual workload that is 

useful in practical application was not established.     

Therefore, the contributions of this paper are divided into 

three parts: First, we develop two EtherCAT master using the 

latest version of IgH EtherCAT, v1.5.2 [14] on each real-time 

Linux extension. For consistency of the results, we selected a 

Linux kernel version that can support both real-time 

extensions in their latest version. Defining the kernel version 

used is essential especially for RT_PREEMPT since the 

kernel code, including software dependent part, is drastically 

modified to guarantee real-time performance. Secondly, both 

EtherCAT masters are connected to six servo drives using 

CANopen-over-EtherCAT (CoE) protocol to exhibit actual 

workload by actuating the corresponding AC motors. Finally, 

we performed timing analysis for each EtherCAT master to 

guarantee practicality in servo control application. The 

performance was evaluated in terms of the periodicity and 

corresponding jitters of the real-time control task, and the in-

controller execution time. The execution time is defined as the 

overall time that it takes for the master to handle data frames 

while in connection with the slaves. 

The second section begins with the introduction of the two 

real-time embedded Linux approaches. Section 3 is about the 

CoE protocol. The fourth section describes the environment 

on which the experiments of this paper were performed. This 

section also discusses the difference of each real-time Linux 

extension in writing a user space application for a real-time 

EtherCAT control task. The fifth section shows the 

experiment results and some remarks regarding the acquired 

data. The last section closes the paper with the conclusion. 

 

REAL-TIME LINUX EXTENSIONS 

Pre-emptible Kernel Approach 

The key point of the pre-emptible kernel approach is to 

minimize the amount of kernel code that is non-pre-emptible, 

while also minimizing the amount of code that must be 

changed to provide this added pre-emptibility. Critical 

sections, interrupt handlers, and interrupt-disable code 

sequences are normally pre-emptible.  

In the Linux kernel with the patch RT_PREEMPT, spinlocks 

and mutexes are converted to real-time spinlocks and 

mutexes, respectively. These mechanisms are used to 

implement mutual exclusions and leverage the SMP 

capabilities of the Linux kernel to add this extra pre-

emptibility without requiring a complete kernel rewrite. 

In a sense, one can loosely think of preemption as the addition 

of a new CPU to the system, and then use the normal locking 

primitives to synchronize with any action taken by the 

preempting task. This preemption cannot be done safely at 

arbitrary places in the kernel code. One section of code where 

this may not be safe is within a critical section. A critical 

section is a code sequence that must not be executed by more 

than one process at the same time. 

 

Figure 1: Pre-emptible kernel approach using RT_PREEMPT 

 

Figure 2:  Dual Kernel Approach using Xenomai 

 

In the Linux kernel these sections are protected by spin locks 

[10]. In addition, with a pre-emptible kernel, breaking locks to 

allow rescheduling is simpler than with the preemption 

patches. If the kernel releases a lock and then re-acquires it, 

when the lock is released preemption will be checked for.  

Massive changes to the kernel code is required to ensure real-

time performance. Meaning that each kernel version requires a 

specific routine or patch to handle these changes.  
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As shown in Fig. 1. After patching the standard Linux kernel, 

CONFIG_PREEMPT_RT has been enabled to reduce the 

latency of the kernel by allowing all kernel code that is not in 

a critical section.  The synthetic real-time task obeys the FIFO 

scheduling policy. The main source of timing is a periodic 

real-time signal originated from POSIX timers. 

 

Dual Kernel Approach 

In contrast with the pre-emptible kernel approach, the dual-

kernel approach enables multiple entities called domains to 

exist simultaneously on the same machine. This also means 

that to guarantee real-time performance, massive change of 

the kernel code is not required.   

These days, the most popular distribution of the dual-kernel 

approach is Xenomai. Xenomai is a real-time development 

framework cooperating with the Linux kernel, to provide a 

pervasive, interface-agnostic, hard real-time support to user 

space applications, seamlessly integrated into the Linux 

environment [11]. The basic structure of a dual-kernel system 

using Xenomai is shown in Fig. 2.  

In 2003 it was merged with the Real-Time Application 

Interface (RTAI) project to produce a production-grade real-

time free software platform. Eventually, this fusion effort 

became independent from RTAI in 2005 as the known as the 

Xenomai project. Hence, it also uses the ADEOS that acts as a 

resource virtualization layer to allow sharing of hardware 

resources among multiple kernel components, with Xenomai 

as the highest priority in the ADEOS domain.  

In comparison to RTAI, the main goal of the Xenomai project 

is to focus more on the clean extensibility, portability, and 

maintainability rather than fast dispatching. It is also better 

structured and is available for a larger number of platforms. 

One of the features of interest in Xenomai is the real-time 

shadow services that enable the real-time thread to be 

migrated between the Xenomai and Linux domain. When a 

real-time task executes into the Linux domain, the Linux 

kernel as a whole inherits the real-time priority of such task, 

and thus competes for the CPU resourced by priority with 

other real-time tasks regardless of the domain they happen to 

belong to. 

 

CANopen-over-EtherCAT 

CANopen is a communication protocol and device profile 

specification for embedded systems, used in automation. In 

terms of the open systems interconnection model, CANopen 

implements the layers above and including the network layer. 

The standard consists of an addressing scheme and an 

application layer defined by a device profile. Fig. 3 shows the 

sequence diagram in developing a control application for a 

CANopen-based slave using the CoE protocol with IgH 

EtherCAT Master. The SDO protocol is used directly, so that 

existing CANopen stacks can be used practically unchanged. 

Optional extensions are defined that lift the 8-byte limit and 

enable complete readability of the object list. The process data 

are organized in process data objects (PDO), which are 

transferred using the efficient means of EtherCAT, naturally 

without the 8-byte limit [15].  All CANopen profiles, 

including the drive profile, DS 402, are fully usable, and 

devices based on it can be transferred to EtherCAT very 

easily. Slaves offer their inputs and outputs by presenting 

PDOs to the master. The available PDOs can be either 

determined by reading out the TxPDO and RxPDO SII 

categories from the EEPROM of the slaves or by reading out 

the appropriate CoE objects, if available.  

 

 

Figure 3: CANopen over EtherCAT device architecture 

 

The application can register the PDO entries for exchange 

during cyclic operation. The sum of all registered PDO entries 

defines the PDO Mapping. An application can register PDO 

entries for exchange. Every PDO entry and its parent PDO is 

part of a memory area in the slave’s physical memory that is 

protected by a sync manager for synchronized access. In order 

to make a sync manager react on a datagram accessing its 

memory, it is necessary to access the last byte covered by the 

sync manager.  

 

Otherwise the sync manager will not react on the datagram 

and no data will be exchanged. That is why the whole 

synchronized memory area should be included into the 

process data image: For example, if a certain PDO entry of a 

slave is registered for exchange with a certain domain, one 

FMMU will be configured to map the complete sync-manager 

protected memory, the PDO entry resides in.  

If a second PDO entry of the same slave is registered for 

process data exchange within the same domain, and it resides 

in the same sync-manager-protected memory as the first one, 

the FMMU configuration is not altered, because the desired 
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memory is already part of the domain’s process data image. If 

the second PDO entry would belong to another sync-manager-

protected area, this complete area would also be included into 

the domains process data image. 

 

EXPERIMENT PROCEDURE 

In this paper, the experiment was conducted in an EtherCAT 

system using the embedded hardware as shown Fig. 4. Table 1 

describes the specification of each component within the 

system.  

 

Table 1: Hardware specifications of the EtherCAT master 

Master 

CPU Intel Atom D2700 @ 2.13 GHz 

Memory 2 GB DDR3 SDRAM 

Network Card Realtek RTL8169 Gigabit 

Slaves 

Servo Drive Sanmotion R Advanced Model 

PDOs 24 Bytes for each slave (144 Bytes) 

 (TxPDO 12 Bytes, RxPDO 12 Bytes) 

 

 

Figure 4: Experimental EtherCAT system 

 

 

Figure 5: EtherCAT control application in UML 

User Space Application 

Fig. 5 shows a user space application in UML to connect the 

EtheCAT master to the slaves via CANopen-overEtherCAT 

protocol. The application is designed to request a master 

instance, map the process data, communicate with the slaves, 

and configure or activate the bus. Before a user space 

application can access the EtherCAT Master, an instance 

should be reserved for exclusive use.  

Next, a process data domain is created which is used for 

registering PDOs and exchanging them in cyclic operation for 

data transaction. The application should also address the 

connected slaves with their proper alias, position, and 

identification/product code. If the data is not matched, the 

EtherCAT operation is halted and the slaves would not be 

configured. These PDOs are registered to the created process 

data domain. Before runtime, the user could also choose 

whether to enable the distributed clock (DC), if it is available 

on the slave device. DC is a clock synchronization mechanism 

making the first connected slave as the reference clock for the 

entire network. Then, the master will be signaled that the 

configuration phase is finish and that the real-time operation 

will be started. PDO configurations are not allowed beyond 

this point. 

IgH EtherCAT Master is equipped with a user space library in 

order to manipulate EtherCAT slaves inside a real-time 

control application. The important functions that are required 

in starting the EtherCAT Master instance is organized in the 

order of function call before the real-time cyclic task: 

ecrt_request_master: This is the first function that an 

application has to call to use EtherCAT that requests an 

EtherCAT master instance for real-time user space operation. 

ecrt_master_create_domain: At least one process data domain 

is required for process data exchange. This object is used for 

registering PDOs and exchanging them in cyclic operation.  

ecrt_master_slave_config: Creates a slave configuration 

object for the given alias and position. If the slave with the 

given address is found during bus configuration, its vendor ID 

and product code are matched against the given value. On 

mismatch, the slave is not configured and an error occurs.  

ecrt_slave_config_pdos: This function specifies a complete 

PDO mapping configuration for the master to reserve the 

complete process data although the slave is not present at 

configuration time. 

ecrt_domain_reg_pdo_entry_list: Registers a bunch of PDO 

entries for the created domain.  

ecrt_slave_config_dc: Enables and configures the usage of 

distributed clocks.       

ecrt_master_activate: This function tells the master that the 

configuration phase is finished and that the real-time 

operation will begin. PDO configurations are not allowed 

beyond this point. 
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ecrt_domain_data: This acquires the domain process data and 

should be called after activating the master.  

From here on, the real-time task starts after the initial master 

and slave configuration. Both the master and the slave should 

be in the operational state to start data transfer. Inside the real-

time task, the states of the both the master and the slaves are 

checked using ecrt_master_state and ecrt_slave_config_state, 

which reads the current master and slave states, respectively.  

 

Table 2: Real-time Linux API and task parameters 

Functions RT_PREEMPT Xenomai 

Task Creation pthread_create() rt_task_create() 

Set Desired Period  clock_nanosleep() rt_task_set_periodic() 

Read Timer clock_gettime() rt_timer_read() 

Parameters RT_PREEMPT Xenomai 

Highest Priority 80 99 

Clock CLOCK_REALTIME 

Scheduler FIFO 

 

Another important sequence to follow during the cyclic task is 

fetching the stored datagram from the Ethernet device buffer 

and determining the state or the working counters of the 

EtherCAT frame. These are done as soon as the state of the 

master and slaves are checked in the order of 

ecrt_master_receive and ecrt_domain_process. The contents 

of the datagrams are copied to local variables using 

EC_READ_{type}_{bit}, which reads the values from an 

EtherCAT frame where the data {type} could either be S for 

signed and U for an unsigned integer. In addition, {bit} 

depends on the size of the data and could be either 8, 16, 32, 

or 64 bits.  On the other hand, EC_WRITE writes the 

processed values to the EtherCAT frame where the used data 

type and size are the same as in EC_READ.   

After processing the datagrams and writing the next set of 

commands, these are copied back to the buffer of the device 

and sent back to the slaves using the function, 

ecrt_domain_queue, which queues the datagrams for 

exchanging at the next call of ecrt_master_send, which sends 

all datagrams that are in the queue. 

The control application is constructed using the provided 

application program interface (API) of each real-time Linux 

approaches. In case of RT_PREEMPT, standard Linux and 

POSIX APIs, such as threads and timers, are used in order to 

create a real-time user space task. Xenomai provides a native 

library that offers task and timer management with their own 

set of functions in accordance with typical commercial RTOS 

for easier migration.  

Table 2 shows a summary of the common functions used to 

create a cyclic control task using RT_PREEMPT and 

Xenomai, respectively. 

PERFORMANCE EVALUATION 

Sung et al. (2013) [12] presented an end-to-end delay model 

of synchronized control processes using an EtherCAT 

network. Based on the analysis model, the characteristics of 

EtherCAT synchronized processes for varying number of 

slaves and process cycle time was evaluated using an open-

source automation controller. Focusing on the real-time 

performance of an EtherCAT Master, Cereia et al. [13] 

presented simulation results in terms of cyclic task accuracy 

and varying CPU load using RTAI and RT_PREEMPT.   

Although the previous studies analyzed important timing 

criterions for an EtherCAT network, performance differences 

that occur during Linux kernel update was not addressed. 

 

Figure 6: Timing analysis diagram 

 

 

Figure 7: Pseudo code for the EtherCAT control task 

Moreover, practical implementation on an actual workload 

was not conducted and only dealt with simulated tasks. In this 

paper, performance analysis is discussed in terms of the 

ability of the EtherCAT Master to handle cyclic control task 

that is bounded by a certain period, the jitter, and the in-

controller execution time of  an EtherCAT Master for each 

real-time approach graphically shown in a timing diagram in 

Fig. 6 using CoE protocol that is discussed in the previous 

section. 

Here, the time duration to acquire the stored buffer from the 

network interface card (NIC) is represented by block C. Block 

P denotes in-controller processing time for the next command, 

and T is the time duration for sending out the frame through 

the NIC. The execution time, Texec=C+P+T, depends on the 

number of slaves and the size of the PDOs. 

procedure Control_Task 

set period and make task periodic 

 while (1) 

    read start time; 

    collect process image from slave; 

    process and compute next command; 

    transmit process image to slave; 

    read end time; 

 end 

wait period; 

end 
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The actual cycle time, Tperiod, is calculated by subtracting the 

acquired value of the current instance from the previous 

iteration. The task release jitter, Tjitter, is calculated as the 

difference between the constant cycle time, Tcycle and Tperiod. 

Fig. 7 shows the pseudo code for the EtherCAT control task 

using CoE protocol. Task creation, parameters, and timing 

APIs varies depending on the real-time Linux extension used, 

as described in Table 2. For the dual-kernel approach, 

Xenomai provides its own API, while RT_PREEMPT timing 

is managed using native Linux and POSIX APIs. 

 

RESULTS AND DISCUSSION 

Table 3 summarizes the results of the performance analysis of 

each real-time approach of the EtherCAT Master that is used 

in our experimental system. EtherCAT Masters using different 

real-time Linux approaches were connected to a commercial 

EtherCAT servo drive manufactured by Sanmotion, a brand 

name of Sanyo Denki servo systems. Each slave was 

configured to contain 24 bytes of PDOS divided to 12 bytes 

each for TxPDOs and RxPDOs, respectively. All necessary 

commands are included especially PDO control word to drive 

in cyclic synchronous position, velocity, or torque mode. This 

measurement was performed for 60 seconds with a cyclic time 

of 1 ms that results to 60,000 samples. 

The EtherCAT control task was set to have the highest 

priority of each EtherCAT Master, with 80 for RT_PREEMPT 

and 99 for Xenomai. As shown from the results, actual cyclic 

time for each master shows that although the average cyclic 

time for both masters are the same, Xenomai is proven to be 

more stable compared to RT_PREEMPT with lower 

maximum and minimum values. Moreover, Xenomai results 

prove higher accuracy as shown by the lower standard 

deviation, which is also proven by the denser box as shown by 

the distribution plot in Fig. 8.  

Table 3: Summary of the performance evaluation results 

Tperiod (ms) RT_PREEMPT Xenomai 

Average 1.000000 1.000000 

Maximum 1.103708 1.024125 

Minimum 0.897500 0.984708 

St. D. 0.002829 0.001662 

Tjitter (µs) RT_PREEMPT Xenomai 

Average 1.433 1.155 

Maximum 103.708 24.125 

Minimum 0.000 0.000 

St. D. 2.439 1.195 

Texec (µs) RT_PREEMPT Xenomai 

Average 94.429 96.022 

Maximum 214.000 174.875 

Minimum 72.625 74.833 

St. D. 9.946 9.916 

 

Figure 8: Distribution plot of the actual period of the cyclic 

EtherCAT control task for each real-time Linux approach in 

milliseconds 

 

The jitter, Tjitter, shows results that are consistent to the actual 

periodic cycle results with lower values for Xenomai-based 

EtherCAT Master compared to one on top of RT_PREEMPT.  

In case of the in-controller execution time, the given 

commands to the slaves are pre-generated velocity profile to 

follow a trajectory. These commands are stored inside a buffer 

to ensure that the delay would have minimal effects on the 

EtherCAT control task. The results show that RT_PREEMPT 

could process and communicate with the slaves faster than 

Xenomai with an average of 94.429 μs compared to 96.022 μs. 

Although the maximum and minimum for the system using 

RT_PREEMPT shows more distance to the mean than 

Xenomai, the standard deviation is more stable with 9.946 μs 

to 9.916 μs.  

With the results in the table, the jitter of the system and the 

overall in-controller execution time of each master are 

statistically under tolerable range in this development 

environment.  We have observed the results using a system 

with multiple slaves and that the size of the PDOs of the CoE-

based EtherCAT Slave is another factor during computation 

of in-controller execution time.  

Another important issue to consider is the reliability of the 

RT_PREEMPT patch. The patch is still an ongoing project 

which is still unstable in terms of support and performance 

resulting to different results for different Linux versions and 

subversions. 

 

CONCLUSION 

In this paper, we have conducted a real-time servo control 

using the open-source solution, IgH EtherCAT Master. The 

solution was implemented under two different real-time Linux 

extensions of RT_PREEMPT and Xenomai for pre-emptible 

kernel and dual kernel approaches, respectively.  
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The results show that the dual-kernel approach using Xenomai 

has performed to have more accurate cyclic task periodicity 

compared to an EtherCAT Master based on RT_PREEMPT 

however, in terms of execution time, the latter has proven to 

be faster than the former.  

Aiming for a standard measurement, for the design and 

predictability of an EtherCAT Master on different real-time 

Linux extensions, we have dealt with implementation of two 

different EtherCAT masters and discussed its performance 

results.  

For our future research, we would extend our analysis to deal 

with multiple slaves with different data types and sizes. 

Focused research on the RT_PREEMPT is also planned by 

comparing results from different versions of the real-time 

Linux approach that would prove its viability for an industrial 

automation system. 
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