
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 11179-11185

© Research India Publications. http://www.ripublication.com

11179

Real-time Servo Control using EtherCAT Master on Real-time Embedded

Linux Extensions

Raimarius Delgado

Ph.D. Student, Department of Electrical and Information Engineering,

Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu,Seoul, South Korea.

Orcid Id: 0000-0002-6759-4240

Byoung Wook Choi

Professor, Department of Electrical and Information Engineering,

Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, South Korea.

Orcid Id: 0000-0002-2404-7415

Abstract

In this paper, we present a real-time servo control application

based on an open-source EtherCAT Master under two

different real-time embedded Linux approaches, the fully pre-

emptible kernel and Xenomai. The fully pre-emptible

approach utilizes the native Linux kernel patched to support

pre-emption of high-priority tasks at any time and protects

critical sections with spin locks. On the contrary, Xenomai is

an example of dual-kernel approach, which provides real-time

extensions to tasks piped alongside the standard Linux kernel

through a hardware abstraction layer. The EtherCAT master is

stacked on top of each real-time operating system to provide

real-time connection with servo drives that are equipped with

EtherCAT slave controllers that supports CANopen protocol.

This paper aims to analyze the real-time performance of the

EtherCAT Master depending on the real-time Linux extension

it is running on in terms of cyclic task periodicity, jitter, and

in-controller execution time. The in-controller execution is

defined as the time interval from the master sending

information to slaves and vice-versa. The experiment is

conducted on an actual system where the master is required to

control a set of servo motors. The results acquired from each

master are analyzed and compared to serve as a guideline in in

designing industrial and automation systems using different

real-time Linux extensions.

Keywords: EtherCAT, Xenomai, RT_PREEMPT, Real-time,

Embedded Linux.

INTRODUCTION

In practical applications, precise control period is critical for

accurate manipulation. For example, in a robot system where

servo motors symbolize each joint, velocity commands given

to each of the motors should be kept in strict time sampling to

smoothly follow the desired path. Moreover, data from the

environment and other disturbances are acquired via several

types of sensors which are updated periodically, if significant

data loss occurs, the system would not be able to react

accordingly and result to a failure. Defining the importance of

conserving real-time requirements [1-2].

To meet these constraints, real-time Ethernet protocols have

been developed to ensure determinism over standard Ethernet

since it is not optimized to send subsequent short messages

and could not realize standard automation real-time

requirements in comparison to other fieldbuses, which are

vital in controlling intelligent and dynamic systems in the

industrial field. EtherCAT (Ethernet for Control Automation)

is a real-time Ethernet protocol that is gaining popularity in

rigorous automation. It offers various appealing features such

as optimal usage of the Ethernet bandwidth for data transfers,

short cycle times, and full compatibility with the standard

Ethernet protocol [3-5].

Commonly, EtherCAT systems require a master connected to

several slaves that are configured either into daisy chain, star,

or tree topology. Slave connection can also be a combination

of any of the three. The EtherCAT master is required to be

running on top of a real-time operating system (RTOS) that

provides mechanisms for synchronized data-handling and

real-time scheduling. Commercial and open source EtherCAT

master distributions such as KPA EtherCAT Master, Simple

Open EtherCAT Master (SOEM), and IgH EtherCAT Master

are designed originally for standard Linux [6-8]. However,

standard Linux does not provide a real-time scheduler since it

values fairness over priority [9]. To achieve real-time

capability, there are two popular real-time Linux methods that

are largely used in general: pre-emptible kernel approach and

dual-kernel approach, represented respectively by

RT_PREEMPT and Xenomai [10-11].

Sung et.al [12] developed an EtherCAT system using older

versions of both Xenomai (2.6.0) and IgH EtherCAT (1.5.0)

and constructed a holistic timing analysis model of the system

in terms of end-to-end delay between the synchronized

EtherCAT processes. However, real-time performance of the

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 11179-11185

© Research India Publications. http://www.ripublication.com

11180

control task that handles EtherCAT frames running on the

master was not included in their timing model.

On the other hand, Cereia et.al [13] performed a similar study

to evaluate the performance of IgH EtherCAT Master using

RT_PREEMPT. Although the real-time performance of the

EtherCAT control task was evaluated, their procedure runs the

EtherCAT master more like a network adapter than a main

controller. Thus, performance with actual workload that is

useful in practical application was not established.

Therefore, the contributions of this paper are divided into

three parts: First, we develop two EtherCAT master using the

latest version of IgH EtherCAT, v1.5.2 [14] on each real-time

Linux extension. For consistency of the results, we selected a

Linux kernel version that can support both real-time

extensions in their latest version. Defining the kernel version

used is essential especially for RT_PREEMPT since the

kernel code, including software dependent part, is drastically

modified to guarantee real-time performance. Secondly, both

EtherCAT masters are connected to six servo drives using

CANopen-over-EtherCAT (CoE) protocol to exhibit actual

workload by actuating the corresponding AC motors. Finally,

we performed timing analysis for each EtherCAT master to

guarantee practicality in servo control application. The

performance was evaluated in terms of the periodicity and

corresponding jitters of the real-time control task, and the in-

controller execution time. The execution time is defined as the

overall time that it takes for the master to handle data frames

while in connection with the slaves.

The second section begins with the introduction of the two

real-time embedded Linux approaches. Section 3 is about the

CoE protocol. The fourth section describes the environment

on which the experiments of this paper were performed. This

section also discusses the difference of each real-time Linux

extension in writing a user space application for a real-time

EtherCAT control task. The fifth section shows the

experiment results and some remarks regarding the acquired

data. The last section closes the paper with the conclusion.

REAL-TIME LINUX EXTENSIONS

Pre-emptible Kernel Approach

The key point of the pre-emptible kernel approach is to

minimize the amount of kernel code that is non-pre-emptible,

while also minimizing the amount of code that must be

changed to provide this added pre-emptibility. Critical

sections, interrupt handlers, and interrupt-disable code

sequences are normally pre-emptible.

In the Linux kernel with the patch RT_PREEMPT, spinlocks

and mutexes are converted to real-time spinlocks and

mutexes, respectively. These mechanisms are used to

implement mutual exclusions and leverage the SMP

capabilities of the Linux kernel to add this extra pre-

emptibility without requiring a complete kernel rewrite.

In a sense, one can loosely think of preemption as the addition

of a new CPU to the system, and then use the normal locking

primitives to synchronize with any action taken by the

preempting task. This preemption cannot be done safely at

arbitrary places in the kernel code. One section of code where

this may not be safe is within a critical section. A critical

section is a code sequence that must not be executed by more

than one process at the same time.

Figure 1: Pre-emptible kernel approach using RT_PREEMPT

Figure 2: Dual Kernel Approach using Xenomai

In the Linux kernel these sections are protected by spin locks

[10]. In addition, with a pre-emptible kernel, breaking locks to

allow rescheduling is simpler than with the preemption

patches. If the kernel releases a lock and then re-acquires it,

when the lock is released preemption will be checked for.

Massive changes to the kernel code is required to ensure real-

time performance. Meaning that each kernel version requires a

specific routine or patch to handle these changes.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 11179-11185

© Research India Publications. http://www.ripublication.com

11181

As shown in Fig. 1. After patching the standard Linux kernel,

CONFIG_PREEMPT_RT has been enabled to reduce the

latency of the kernel by allowing all kernel code that is not in

a critical section. The synthetic real-time task obeys the FIFO

scheduling policy. The main source of timing is a periodic

real-time signal originated from POSIX timers.

Dual Kernel Approach

In contrast with the pre-emptible kernel approach, the dual-

kernel approach enables multiple entities called domains to

exist simultaneously on the same machine. This also means

that to guarantee real-time performance, massive change of

the kernel code is not required.

These days, the most popular distribution of the dual-kernel

approach is Xenomai. Xenomai is a real-time development

framework cooperating with the Linux kernel, to provide a

pervasive, interface-agnostic, hard real-time support to user

space applications, seamlessly integrated into the Linux

environment [11]. The basic structure of a dual-kernel system

using Xenomai is shown in Fig. 2.

In 2003 it was merged with the Real-Time Application

Interface (RTAI) project to produce a production-grade real-

time free software platform. Eventually, this fusion effort

became independent from RTAI in 2005 as the known as the

Xenomai project. Hence, it also uses the ADEOS that acts as a

resource virtualization layer to allow sharing of hardware

resources among multiple kernel components, with Xenomai

as the highest priority in the ADEOS domain.

In comparison to RTAI, the main goal of the Xenomai project

is to focus more on the clean extensibility, portability, and

maintainability rather than fast dispatching. It is also better

structured and is available for a larger number of platforms.

One of the features of interest in Xenomai is the real-time

shadow services that enable the real-time thread to be

migrated between the Xenomai and Linux domain. When a

real-time task executes into the Linux domain, the Linux

kernel as a whole inherits the real-time priority of such task,

and thus competes for the CPU resourced by priority with

other real-time tasks regardless of the domain they happen to

belong to.

CANopen-over-EtherCAT

CANopen is a communication protocol and device profile

specification for embedded systems, used in automation. In

terms of the open systems interconnection model, CANopen

implements the layers above and including the network layer.

The standard consists of an addressing scheme and an

application layer defined by a device profile. Fig. 3 shows the

sequence diagram in developing a control application for a

CANopen-based slave using the CoE protocol with IgH

EtherCAT Master. The SDO protocol is used directly, so that

existing CANopen stacks can be used practically unchanged.

Optional extensions are defined that lift the 8-byte limit and

enable complete readability of the object list. The process data

are organized in process data objects (PDO), which are

transferred using the efficient means of EtherCAT, naturally

without the 8-byte limit [15]. All CANopen profiles,

including the drive profile, DS 402, are fully usable, and

devices based on it can be transferred to EtherCAT very

easily. Slaves offer their inputs and outputs by presenting

PDOs to the master. The available PDOs can be either

determined by reading out the TxPDO and RxPDO SII

categories from the EEPROM of the slaves or by reading out

the appropriate CoE objects, if available.

Figure 3: CANopen over EtherCAT device architecture

The application can register the PDO entries for exchange

during cyclic operation. The sum of all registered PDO entries

defines the PDO Mapping. An application can register PDO

entries for exchange. Every PDO entry and its parent PDO is

part of a memory area in the slave’s physical memory that is

protected by a sync manager for synchronized access. In order

to make a sync manager react on a datagram accessing its

memory, it is necessary to access the last byte covered by the

sync manager.

Otherwise the sync manager will not react on the datagram

and no data will be exchanged. That is why the whole

synchronized memory area should be included into the

process data image: For example, if a certain PDO entry of a

slave is registered for exchange with a certain domain, one

FMMU will be configured to map the complete sync-manager

protected memory, the PDO entry resides in.

If a second PDO entry of the same slave is registered for

process data exchange within the same domain, and it resides

in the same sync-manager-protected memory as the first one,

the FMMU configuration is not altered, because the desired

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 11179-11185

© Research India Publications. http://www.ripublication.com

11182

memory is already part of the domain’s process data image. If

the second PDO entry would belong to another sync-manager-

protected area, this complete area would also be included into

the domains process data image.

EXPERIMENT PROCEDURE

In this paper, the experiment was conducted in an EtherCAT

system using the embedded hardware as shown Fig. 4. Table 1

describes the specification of each component within the

system.

Table 1: Hardware specifications of the EtherCAT master

Master

CPU Intel Atom D2700 @ 2.13 GHz

Memory 2 GB DDR3 SDRAM

Network Card Realtek RTL8169 Gigabit

Slaves

Servo Drive Sanmotion R Advanced Model

PDOs 24 Bytes for each slave (144 Bytes)

 (TxPDO 12 Bytes, RxPDO 12 Bytes)

Figure 4: Experimental EtherCAT system

Figure 5: EtherCAT control application in UML

User Space Application

Fig. 5 shows a user space application in UML to connect the

EtheCAT master to the slaves via CANopen-overEtherCAT

protocol. The application is designed to request a master

instance, map the process data, communicate with the slaves,

and configure or activate the bus. Before a user space

application can access the EtherCAT Master, an instance

should be reserved for exclusive use.

Next, a process data domain is created which is used for

registering PDOs and exchanging them in cyclic operation for

data transaction. The application should also address the

connected slaves with their proper alias, position, and

identification/product code. If the data is not matched, the

EtherCAT operation is halted and the slaves would not be

configured. These PDOs are registered to the created process

data domain. Before runtime, the user could also choose

whether to enable the distributed clock (DC), if it is available

on the slave device. DC is a clock synchronization mechanism

making the first connected slave as the reference clock for the

entire network. Then, the master will be signaled that the

configuration phase is finish and that the real-time operation

will be started. PDO configurations are not allowed beyond

this point.

IgH EtherCAT Master is equipped with a user space library in

order to manipulate EtherCAT slaves inside a real-time

control application. The important functions that are required

in starting the EtherCAT Master instance is organized in the

order of function call before the real-time cyclic task:

ecrt_request_master: This is the first function that an

application has to call to use EtherCAT that requests an

EtherCAT master instance for real-time user space operation.

ecrt_master_create_domain: At least one process data domain

is required for process data exchange. This object is used for

registering PDOs and exchanging them in cyclic operation.

ecrt_master_slave_config: Creates a slave configuration

object for the given alias and position. If the slave with the

given address is found during bus configuration, its vendor ID

and product code are matched against the given value. On

mismatch, the slave is not configured and an error occurs.

ecrt_slave_config_pdos: This function specifies a complete

PDO mapping configuration for the master to reserve the

complete process data although the slave is not present at

configuration time.

ecrt_domain_reg_pdo_entry_list: Registers a bunch of PDO

entries for the created domain.

ecrt_slave_config_dc: Enables and configures the usage of

distributed clocks.

ecrt_master_activate: This function tells the master that the

configuration phase is finished and that the real-time

operation will begin. PDO configurations are not allowed

beyond this point.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 11179-11185

© Research India Publications. http://www.ripublication.com

11183

ecrt_domain_data: This acquires the domain process data and

should be called after activating the master.

From here on, the real-time task starts after the initial master

and slave configuration. Both the master and the slave should

be in the operational state to start data transfer. Inside the real-

time task, the states of the both the master and the slaves are

checked using ecrt_master_state and ecrt_slave_config_state,

which reads the current master and slave states, respectively.

Table 2: Real-time Linux API and task parameters

Functions RT_PREEMPT Xenomai

Task Creation pthread_create() rt_task_create()

Set Desired Period clock_nanosleep() rt_task_set_periodic()

Read Timer clock_gettime() rt_timer_read()

Parameters RT_PREEMPT Xenomai

Highest Priority 80 99

Clock CLOCK_REALTIME

Scheduler FIFO

Another important sequence to follow during the cyclic task is

fetching the stored datagram from the Ethernet device buffer

and determining the state or the working counters of the

EtherCAT frame. These are done as soon as the state of the

master and slaves are checked in the order of

ecrt_master_receive and ecrt_domain_process. The contents

of the datagrams are copied to local variables using

EC_READ_{type}_{bit}, which reads the values from an

EtherCAT frame where the data {type} could either be S for

signed and U for an unsigned integer. In addition, {bit}

depends on the size of the data and could be either 8, 16, 32,

or 64 bits. On the other hand, EC_WRITE writes the

processed values to the EtherCAT frame where the used data

type and size are the same as in EC_READ.

After processing the datagrams and writing the next set of

commands, these are copied back to the buffer of the device

and sent back to the slaves using the function,

ecrt_domain_queue, which queues the datagrams for

exchanging at the next call of ecrt_master_send, which sends

all datagrams that are in the queue.

The control application is constructed using the provided

application program interface (API) of each real-time Linux

approaches. In case of RT_PREEMPT, standard Linux and

POSIX APIs, such as threads and timers, are used in order to

create a real-time user space task. Xenomai provides a native

library that offers task and timer management with their own

set of functions in accordance with typical commercial RTOS

for easier migration.

Table 2 shows a summary of the common functions used to

create a cyclic control task using RT_PREEMPT and

Xenomai, respectively.

PERFORMANCE EVALUATION

Sung et al. (2013) [12] presented an end-to-end delay model

of synchronized control processes using an EtherCAT

network. Based on the analysis model, the characteristics of

EtherCAT synchronized processes for varying number of

slaves and process cycle time was evaluated using an open-

source automation controller. Focusing on the real-time

performance of an EtherCAT Master, Cereia et al. [13]

presented simulation results in terms of cyclic task accuracy

and varying CPU load using RTAI and RT_PREEMPT.

Although the previous studies analyzed important timing

criterions for an EtherCAT network, performance differences

that occur during Linux kernel update was not addressed.

Figure 6: Timing analysis diagram

Figure 7: Pseudo code for the EtherCAT control task

Moreover, practical implementation on an actual workload

was not conducted and only dealt with simulated tasks. In this

paper, performance analysis is discussed in terms of the

ability of the EtherCAT Master to handle cyclic control task

that is bounded by a certain period, the jitter, and the in-

controller execution time of an EtherCAT Master for each

real-time approach graphically shown in a timing diagram in

Fig. 6 using CoE protocol that is discussed in the previous

section.

Here, the time duration to acquire the stored buffer from the

network interface card (NIC) is represented by block C. Block

P denotes in-controller processing time for the next command,

and T is the time duration for sending out the frame through

the NIC. The execution time, Texec=C+P+T, depends on the

number of slaves and the size of the PDOs.

procedure Control_Task

set period and make task periodic

 while (1)

 read start time;

 collect process image from slave;

 process and compute next command;

 transmit process image to slave;

 read end time;

 end

wait period;

end

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 11179-11185

© Research India Publications. http://www.ripublication.com

11184

The actual cycle time, Tperiod, is calculated by subtracting the

acquired value of the current instance from the previous

iteration. The task release jitter, Tjitter, is calculated as the

difference between the constant cycle time, Tcycle and Tperiod.

Fig. 7 shows the pseudo code for the EtherCAT control task

using CoE protocol. Task creation, parameters, and timing

APIs varies depending on the real-time Linux extension used,

as described in Table 2. For the dual-kernel approach,

Xenomai provides its own API, while RT_PREEMPT timing

is managed using native Linux and POSIX APIs.

RESULTS AND DISCUSSION

Table 3 summarizes the results of the performance analysis of

each real-time approach of the EtherCAT Master that is used

in our experimental system. EtherCAT Masters using different

real-time Linux approaches were connected to a commercial

EtherCAT servo drive manufactured by Sanmotion, a brand

name of Sanyo Denki servo systems. Each slave was

configured to contain 24 bytes of PDOS divided to 12 bytes

each for TxPDOs and RxPDOs, respectively. All necessary

commands are included especially PDO control word to drive

in cyclic synchronous position, velocity, or torque mode. This

measurement was performed for 60 seconds with a cyclic time

of 1 ms that results to 60,000 samples.

The EtherCAT control task was set to have the highest

priority of each EtherCAT Master, with 80 for RT_PREEMPT

and 99 for Xenomai. As shown from the results, actual cyclic

time for each master shows that although the average cyclic

time for both masters are the same, Xenomai is proven to be

more stable compared to RT_PREEMPT with lower

maximum and minimum values. Moreover, Xenomai results

prove higher accuracy as shown by the lower standard

deviation, which is also proven by the denser box as shown by

the distribution plot in Fig. 8.

Table 3: Summary of the performance evaluation results

Tperiod (ms) RT_PREEMPT Xenomai

Average 1.000000 1.000000

Maximum 1.103708 1.024125

Minimum 0.897500 0.984708

St. D. 0.002829 0.001662

Tjitter (µs) RT_PREEMPT Xenomai

Average 1.433 1.155

Maximum 103.708 24.125

Minimum 0.000 0.000

St. D. 2.439 1.195

Texec (µs) RT_PREEMPT Xenomai

Average 94.429 96.022

Maximum 214.000 174.875

Minimum 72.625 74.833

St. D. 9.946 9.916

Figure 8: Distribution plot of the actual period of the cyclic

EtherCAT control task for each real-time Linux approach in

milliseconds

The jitter, Tjitter, shows results that are consistent to the actual

periodic cycle results with lower values for Xenomai-based

EtherCAT Master compared to one on top of RT_PREEMPT.

In case of the in-controller execution time, the given

commands to the slaves are pre-generated velocity profile to

follow a trajectory. These commands are stored inside a buffer

to ensure that the delay would have minimal effects on the

EtherCAT control task. The results show that RT_PREEMPT

could process and communicate with the slaves faster than

Xenomai with an average of 94.429 μs compared to 96.022 μs.

Although the maximum and minimum for the system using

RT_PREEMPT shows more distance to the mean than

Xenomai, the standard deviation is more stable with 9.946 μs

to 9.916 μs.

With the results in the table, the jitter of the system and the

overall in-controller execution time of each master are

statistically under tolerable range in this development

environment. We have observed the results using a system

with multiple slaves and that the size of the PDOs of the CoE-

based EtherCAT Slave is another factor during computation

of in-controller execution time.

Another important issue to consider is the reliability of the

RT_PREEMPT patch. The patch is still an ongoing project

which is still unstable in terms of support and performance

resulting to different results for different Linux versions and

subversions.

CONCLUSION

In this paper, we have conducted a real-time servo control

using the open-source solution, IgH EtherCAT Master. The

solution was implemented under two different real-time Linux

extensions of RT_PREEMPT and Xenomai for pre-emptible

kernel and dual kernel approaches, respectively.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 11179-11185

© Research India Publications. http://www.ripublication.com

11185

The results show that the dual-kernel approach using Xenomai

has performed to have more accurate cyclic task periodicity

compared to an EtherCAT Master based on RT_PREEMPT

however, in terms of execution time, the latter has proven to

be faster than the former.

Aiming for a standard measurement, for the design and

predictability of an EtherCAT Master on different real-time

Linux extensions, we have dealt with implementation of two

different EtherCAT masters and discussed its performance

results.

For our future research, we would extend our analysis to deal

with multiple slaves with different data types and sizes.

Focused research on the RT_PREEMPT is also planned by

comparing results from different versions of the real-time

Linux approach that would prove its viability for an industrial

automation system.

REFERENCES

[1] E. Rodriguez-Seda, C. Tang, M.W. Spong, and D.M.

Stipanovic, “Trajectory tracking with collision avoidance

for nonholonomic vehicles with acceleration constraints

and limited sensing,” International Journal of Robotics

Research, vol. 33, no. 12, pp. 1569-1592, 2012.

[2] R. Delgado, C.H. Hong, W.C. Shin, and B.W. Choi,

“Development and control of an omnidirectional mobile

robot on an EtherCAT network,” International Journal of

Applied Engineering Research, vol. 11, no. 21, pp.

10586-10592, 2016.

[3] Y. Moon, N.Y. Ko, K. Lee, Y. Bae, and J.K. Park,

“Real-time EtherCAT master implementation on

Xenomai for a Robot System,” International Journal of

Fuzzy Logic and Intelligent Systems, vol. 9, no. 3, pp.

244-248, 2009.

[4] Rostan, M. and J.E. Stubbs, 2010. EtherCAT Enabled

Advanced Control Architecture. Proceedings of the 2010

IEEE/SEMI on Advanced Semiconductor Manufacturing

Conference, July. 11-13, IEEE Xplore Press, San

Francisco, CA, pp: 39-44.

[5] ETG, 2014. Introduction to EtherCAT by EtherCAT

Technology Group.

https://www.ethercat.org/en/downloads/downloads_0F62

03AB7DE44BDB93DEC585A581A7D7.htm

[6] Ferrari, P., A. Flammini, D. Marioli and A. Taroni, 2008.

A distributed instrument for performance analysis of

real-time Ethernet networks. IEEE Transactions on

Industrial Informatics, 4: 16-25.

[7] Vitturi, S., L. Peretti, L. Seno, M. Zigliotto and C.

Zunino, 2011. Real-time Ethernet networks for motion

control. Computer Standards & Interfaces, 33: 465-476.

[8] L. Seno, and C. Zunino, “Real-Time Ethernet networks

evaluation using performance indicators,” Proc. 14th

IEEE Int’l Conf. Emerging Technologies and Factory

Automation (ETFA), 2009.

[9] J. Arm, Z. Bradac, and V. Kaczmarczyk, “Real-time

capabilities of Linux RTAI,” IFAC Conference on

Prgrammable Devices and Embedded Systems, 2016.

[10] D.B. Oliveira, and R.S. Oliveira, “Timing analysis of the

PREEMPT RT Linux kernel,” Software Practice and

Experience, vol. 46, no. 6, pp. 789-819, 2015.

[11] B.W. Choi, D.G. Shin, J.H. Park, S.Y. Yi, and S. Gerald,

“Real-time control architecture using Xenomai for

intelligent service robot in USN environment,”

Intelligent Service Robotics, vol. 2, no. 2, pp. 139-151,

2009.

[12] M. Sung, I. Kim, and T. Kim, “Toward a holistic delay

analysis of EtherCAT synchronized control processes,”

International Journal of Computers, Communications

and Control, vol. 8, no. 4, pp. 608-621, 2013.

[13] M. Cereia, I.C. Bertolotti, and S. Scanxio, “Performance

of a real-time EtherCAT Master under Linux,” IEEE

Transactions on Industrial Informatics, vol. 7, no. 4, pp.

679-687, 2011.

[14] IgH EtherLab, http://www.etherlab.org/en/index.php

[15] F. Pose, IgH EtherCAT Master 1.5.2 Documentation.

2013.

http://www.etherlab.org/en/index.php

